ARITHMETIC AND GEOMETRIC PROGRESSIONS IN PRODUCT SETS OVER FINITE FIELDS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic and Geometric Progressions in Productsets over Finite Fields

Given two sets A,B ⊆ IFq of elements of the finite field IFq of q elements, we show that the productset AB = {ab | a ∈ A, b ∈ B} contains an arithmetic progression of length k ≥ 3 provided that k < p, where p is the characteristic of IFq, and #A#B ≥ 3q 2d−2/k. We also consider geometric progressions in a shifted productset AB + h, for f ∈ IFq, and obtain a similar result.

متن کامل

On Restricted Arithmetic Progressions over Finite Fields

Let A be a subset of Fp , the n-dimensional linear space over the prime field Fp of size at least δN (N = p), and let Sv = P −1(v) be the level set of a homogeneous polynomial map P : Fp → Fp of degree d, for v ∈ Fp . We show, that under appropriate conditions, the set A contains at least cN |S| arithmetic progressions of length l ≤ d with common difference in Sv, where c is a positive constant...

متن کامل

Product Sets of Arithmetic Progressions

In this paper, we generalize a result of Nathanson and Tenenbaum on sum and product sets, partially answering the problem raised at the end of their paper [N-T]. More precisely, they proved that if A is a large finite set of integers such that |2A| < 3|A| − 4, then |A2| > ( |A| `n |A| ) 2 |A|2−ε. It is shown here that if |2A| < α|A|, for some fixed α < 4, then |A2| |A|2−ε. Furthermore, if α < 3...

متن کامل

Arithmetic progressions in multiplicative groups of finite fields

Let G be a multiplicative subgroup of the prime field Fp of size |G| > p1−κ and r an arbitrarily fixed positive integer. Assuming κ = κ(r) > 0 and p large enough, it is shown that any proportional subset A ⊂ G contains non-trivial arithmetic progressions of length r. The main ingredient is the Szemerédi-Green-Tao theorem. Introduction. We denote by Fp the prime field with p elements and Fp its ...

متن کامل

Arithmetic progressions of four squares over quadratic fields

Let d be a squarefree integer. Does there exist four squares in arithmetic progression over Q( √ d )? We shall give a partial answer to this question, depending on the value of d. In the affirmative case, we construct explicit arithmetic progressions consisting of four squares over Q( √ d ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2008

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972708000695